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ABSTRACT

The design of integrated controls for a complex
system like a wind turbine relies on a system model
in an explicit format, e.g., state-space format.
Current wind turbine codes focus on turbine
simulation and not on system characterization,
which is desired for controls design as well as
applications like operating turbine modal analysis,
optimal design, and aeroelastic stability analysis.
We initiated development of a specialized code to
provide explicit system models. The code draws
heavily from modern multibody modeling concepts
as well as advanced features of an existing helicopter
code. The code will be implemented in two phases:
structural modeling followed by aerodynamic
modeling.  This paper* reviews structural modeling
that comprises three major steps: formulation of
component equations, assembly into system
equations, and linearization.  Linearization provides
system equations in descriptive formats, clearly
delineating linear and nonlinear parts, which can
then be readily used by optimal control schemes.

INTRODUCTION

A wind turbine is a complex machine that operates
under severe dynamic and aerodynamic conditions.
A multi-input multi-output control system offers the
potential to coordinate machine component functions
and improve performance, fatigue life, and stability.
Central to integrated control efforts is the availability
of wind turbine explicit models.  Examples of
explicit models are state-space models, finite element
models, and modal models. An explicit model also
separates linear and nonlinear parts of system
governing equations in forms that can be readily
integrated into systematic control design schemes.
Currently available wind turbine codes, e.g.
ADAMS1, FAST2, and YawDyn3, have been
successfully used to model a broad range of wind
                                                       
* This paper is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

turbines.  However, these codes rely on implicit
formulation that is adequate for simulation but not
for designing controllers, computing operating
modes, and other important applications. ADAMS
has comprehensive modeling capabilities and can
generate a first-order explicit state-space model.
However, a state-space model can be extracted only
for a non-operating (parked) wind turbine.  The
accuracy of the model deteriorates rapidly as the
rotor speed increases.  Another limitation is that the
extracted model offers only numerical information
and not symbolic information, in terms of system
parameters and degrees of freedom, that helps cover
a wider range of design and operating conditions.
System identification techniques may be used to
extract low-order models4 from simulation codes.
These techniques, however, provide only single-
operation-specific numerical information and require
an inordinate amount of time and system
identification expertise.  Also, the fidelity of such
models is limited only to the first few system modes.
For a complex system like a wind turbine, such
identified models may not capture system cross-
couplings, e.g., yaw-flap-pitch, with the accuracy
required for multi-input multi-output controls
design.  Models extracted via system identification
therefore may at best be used for simple applications,
e.g., power regulation or flap loads alleviation alone.

We initiated development of a specialized code to
complement existing turbine codes and provide
explicit system descriptive models.  The code draws
from newly developed flexible multibody modeling
techniques5,6 and selective features of an advanced
helicopter code called UMARC7, that is well
validated and extensively used in the helicopter field.
Adaptation of sophisticated features from the
helicopter code such as a finite element technique
specialized to rotating blade, multiblade coordinate
transformation, and Floquet analysis of periodic
systems, would save us several years of development
and validation efforts. A detailed rationale behind
this approach for code development and associated
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modeling issues were presented8 at the 1998
Windpower conference held in Bakersfield,
California.  The code will be developed in two
phases: phase I will cover structural modeling and
phase II will cover full aeroelastic modeling.

This paper reviews our effort under way on structural
modeling.  We first describe wind turbine structural
idealization, which forms the basis for all subsequent
derivations.  We then derive turbine component
equations of motion.  Next, the component equations
are assembled to satisfy inter-component force and
displacement constraints.  This is followed by
linearization of the system equations and
transformation into explicit formats.

WIND TURBINE IDEALIZATION

We idealize the turbine structure by replacing it with
an assemblage of flexible and rigid bodies joined by
actuator elements and constraints, some of which
may be time-variant.  Each of these bodies may
undergo large rotational and translational motions.
The blades are idealized as rotating flexible beams,
which may be single-path (for conventional blades)
or multiple-path (for blades with multiple spars and
linkages that transmit loads to the hub).  Each beam
undergoes flap bending, lag bending, elastic twist
and axial deflection, and may have arbitrary
spanwise distributions of mass, section inertia,
flexural stiffness, torsion stiffness, built-in twist, and
offsets amongst the elastic axis, the centers-of-mass
axis and the tension-centers axis.  The hub, the
generator, the nacelle, the gearbox inertia, and the
bed frame are treated as rigid bodies.  The tower and
the drive-train shaft are treated as flexible beams.
The turbine model has provisions for nonlinear
spring dampers to restrain any joint motion, e.g.
yaw, teeter and nacelle tilt.  There are also
provisions for arbitrary number of blades, precone,
pitch control, and delta-3 effects. This results in a
comprehensive turbine model that captures all the
structural mechanisms and couplings required for
high-fidelity loads and response analysis, stability
evaluation, modal analysis, and controls
applications. For detailed stress analysis at a critical
location, which may for example be required for
fatigue life calculations, loads and response output
from the comprehensive code may be input to any
commercial finite element code that models in detail
only a small region enclosing that location.

SYSTEM COORDINATES

Much of the current research in multibody dynamics
addresses the selection of system generalized
coordinates that describe time-dependent system
configuration.  The selection profoundly effects the
efficacy of each of the three major steps involved in
system modeling, i.e., component modeling,
assembly, and linearization.  A trade-off must be
made between the generality and the efficiency of the
dynamic formulation.  For example, the choice of
absolute coordinates, wherein all the degrees of
freedom are referred to a single inertial frame,
makes the assembly process trivial; however, for a
system with rotating parts, it leads to erroneous
linearization.  Incorrect linearization results because
some important centrifugal terms, that depend on
rotational speed and are linear when referred to a
rotating natural frame, become nonlinear when
referred to the inertial frame, and linearization drops
these terms.  That is why ADAMS offers excellent
simulation capabilities that rely on assembled
equations, but fails to provide correct system modes
that rely on linearized equations.  The choice of
coordinates has an even more pronounced effect on
the number of system equations, the simplicity of
each equation, computability of constraint forces,
numerical conditioning of equations, and the
efficiency of the solution procedures.  We made and
are still making effort to study these issues as best as
we can.  Once we have conclusive results, a report
would follow.  Basically, for multi-rigid-body
dynamic modeling, we have three choices for system
coordinates: absolute configuration coordinates, joint
variables, and generalized speeds.

The choice of absolute coordinates leads to similar-
looking equations for each body and makes assembly
straightforward.  This choice, however, leads to a
nonminimal number of system equations.  For a
system with n degrees of freedom and m constraints,
the number of nonminimal system equations would
be n+2m which comprise n+m differential equations
associated with the n+m absolute generalized
coordinates, and m algebraic equations associated
with the m constraints.  These equations are solved
for the n+m absolute coordinates and m Lagrange
multipliers associated with the constraint forces.
The resulting mixed set of differential-algebraic
equations, however, is extremely difficult to solve
accurately and a special technique, like the one
proposed by Wehage9, must be employed. The extra
2m equations also make this choice computationally
expensive.  Coordinate partitioning may be used to
eliminate the dependent coordinates; however, this
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can be a tricky process.  The second choice, joint
variables, wherein the system equations of motion
are written in terms of joint degrees of freedom,
leads to a minimal set of differential equations and
hence substantial computational time savings.
However, it requires relatively complex constraint-
specific recursive formulation.  This approach is still
desirable since it leads to linear equations that yield
a correct eigensolution for a system with rotating
parts.  The third choice for system coordinates is to
use generalized speeds10, defined as a linear
combination of time derivatives of generalized
coordinates.  This also leads to a minimal set of
equations since the constraints are implicitly taken
care of during formulation.  This choice also has the
potential to yield efficient simple equations provided
the generalized speeds are defined rightly to suit
given constraints.  The choice also is system-
configuration-specific and does not permit the
automatic assembly required for a general system.
Also, an efficient interface of the rigid-body
subassembly with the elastic-body subassembly is
still an open research area.

Compared with rigid body dynamics, the selection of
coordinates for flexible body dynamics presents a
number of conceptual problems.  Exact modeling of
an elastic body requires infinite degrees of freedom.
Therefore, the first problem is the definition of an
acceptable model for the elastic body using a finite
set of coordinates.  In the Rayleigh-Ritz method, this
problem is solved by assuming that the shape of the
deformed body with respect to a reference frame can
be approximated through a finite set of a specific
class of functions.  The finite element method is one
type of Raleigh method in which the elastic body is
discretized into a number of regions connected by
nodes. The deformation of the elastic body with
respect to a reference frame is expressed in terms of
shape functions and nodal degrees of freedom
associated with each region called an element.  The
efficacy of the finite element formulation depends to
a large extent on the nature of the element nodal
coordinates.  This is still a field of extensive research
and a number of methods have been proposed which
can be roughly classified into three basic
formulations: the floating reference frame of
formulation, the incremental formulation, and the
large rotation vector formulation.  Shabana11

provides an excellent discussion of these methods

We select joint variables for rigid bodies since it
leads to a minimal set of system equations and also
correct linearization.  For the elastic bodies, we
select a floating frame of reference formulation

wherein a coordinate system is assigned to each
deformable body. The large rotation and translation
of the deformable body are defined in terms of the
absolute motion of the body-attached reference
frame; this absolute motion in turn is expressed
recursively in terms of joint coordinates.  The
deformation of the body with respect to its reference
frame is expressed in terms of the elements’ nodal
coordinates.  It can be demonstrated that this choice
leads to exact modeling of the rigid body inertia
when there is no deformation.  However, the
deformation of the body is assumed to be moderate.
This assumption is valid for wind turbine elastic
components and allows substantial simplification of
the governing equations.

COMPONENT EQUATIONS

Basic to full system modeling is the derivation of
equations governing its components.  From the
section on wind turbine idealization it follows that
any component of the wind turbine may be modeled
either as a flexible beam or as a rigid body.

For the flexible beam, Hamilton's variational
principle is used to derive component equations of
motion.  For a non-conservative system, this
principle is expressed as

( )∫ =−−=
2

1

0
t

t

dtWTU δδδδπ (1)

where Uδ  is the virtual variation of potential
energy, Tδ  is the virtual variation of kinetic energy,
and Wδ  is the virtual work done by external forces,
e.g., aerodynamic forces, which are not derivable
from a potential function.  The virtual variation in
the strain energy is given by
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(2)

The strain components xxε , ηε x , ζε x  are functions

of the beam extensional deflection u , bending

deflections ν  and w , the elastic twist φ , and their

spatial derivatives.  The explicit expressions for
these strains are derived by considering the

orientation of a generic coordinate triad ( )ζηξ ,, ,

attached to the principal axes of a cross section of

the deformed blade, with respect to the ( )zyx ,,
coordinate triad attached to the undeformed blade.
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Detailed derivation and expressions for the strain
components are provided in the UMARC Theory
Manual7.  The ( )ζηξρ ,,  is the beam local material

density, g
v

 is the gravity vector, and QIR
v

is the

position vector of an arbitrary point ( )ζη,,x  on the

blade with respect to the ground attached (inertial)
frame. The expression for the kinetic energy T  for
the flexible blade is also provided in UMARC7.
However, this expression is derived for a helicopter-
specific configuration (comprising fuselage-shaft-
hub sequence) and assuming moderate fuselage
angular displacements.  We modify the kinetic
energy expression to allow for an arbitrarily large
motion of the reference frame attached to the beam
root.  For the blade, motion of its reference frame
would result from the cascaded effect of tower top
motion with respect to ground, nacelle motion with
respect to the tower top, drive-train motion with
respect to the nacelle, the hub motion with respect to
the drive train, and the blade reference frame motion
with respect to the hub.  The derived beam
expression is general in nature and is applicable to
all the flexible components, i.e., tower, shaft, and
blades, with arbitrary boundary constraints. The
system assembly procedure, discussed later,
automatically synthesizes the cumulative effect of all
the individual component motions.  A detailed
derivation of T  is outside the scope of this paper;
it will be included in a report under preparation.
The final expression for the virtual variation in the
kinetic energy, in a compact vector form, can be
written as
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(3)
where

[ ]Txxxx 321 ˆˆˆˆ =

and [ ] [ ]TT ζηξηηηη == 321 ˆˆˆˆ

are the unit vectors associated with the coordinate

systems ( )zyx ,,  and ( )ζηξ ,,  respectively.  The

section integrals are defined as

∫∫=
A

ddm ηξρ ; ∫∫=
A

ddm ηξηρη
vv

∫∫ ⋅=
A

dd ηξηηρρ vv
3 ; ∫∫=

A
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33 (4)

[ ]Txxxx 321=v

=u
v

elastic axis deflection vector

[ ]Tuuu 321= [ ]Twvu=
=OIR

v
position vector of the base-frame origin with

respect to the inertial frame. [ ]T
321 κκκκ =v

The subscripts IPO ,,  represent respectively the

origins of the base frame, the defamed-blade-
attached frame, and the inertial frame.  The vector
ωv  and αv represent the angular velocity and the

angular acceleration, respectively.  The iκ  is the

curvature-like quality called the moment curvature.

Note that the axial degrees of freedom u in the above
derivation is in fact a quasi-coordinate representing
the resultant effect of elastic axial deformation and
kinematic shortening due to beam flexure, i.e.

∫ +−=
x

e dxwvuu
0

22 )''(
2

1 (5)

If the effects of the axial elastic elongation, eu , are

considered negligible, then the axial displacement
u may simply be expressed in terms of the slopes
'v and 'w  via equation (5).  This would eliminate the

axial degree of freedom.  But, for a blade with
multiple load paths, via flexbeams for example, one
must use14 the axial coordinate to avoid erroneous
results.  The use of u  coordinate, however, results
in severe numerical problems and incorrect
linearization.  This problem is solved7 by using the

axial elastic elongation eu  as the nodal coordinate

instead of u . This leads to integro-partial
differential equations. Though this necessitates
computation of spatial integrals, to account for
Coriolis effects, numerical stability is guaranteed and
correct linearization is also assured via the following
substitution:

∫ ∆+∆+∆=∆
x

e dxwwvvuu
0

)''''(  (6)



AIAA-99-0032

5
American Institute of Aeronautics and Astronautics

5

Finite Element Discretization

Hamilton's principle (1) results in partial differential
equations for the continuous-domain flexible body.
A specialized finite element technique7, developed to
handle integral-partial differential equations
associated with rotating flexible blades, is used to
spatially discretize the governing equations into a
finite set of N ordinary differential equations in time,
where N is the number of generalized coordinates
representing the finite element modal degrees of
freedom.  Each flexible component (tower, shaft, or
blade) is divided into a number of 15-degrees of
freedom beam elements (Figure 1).  The finite
element assembly process ensures continuity of
displacements and slopes for the two transverse
bending deflections, and continuity of axial and
elastic twist deflections.  Using Hamilton's
polynomials, the distribution of deflections over a
beam element i  is expressed in terms of the nodal

displacement vector, iq , which consists of the

fifteen nodal degrees of freedom shown in Figure 1.
Formulation of beam element equations, followed by
assembly, results in the full beam governing
equations:

FbFFbfFbFbbb X XKCXMqKqcqM +++++ &&&&&&

( )tb ,,,,,, θfxxqqF &&= (7)

where q  is the vector of the full beam elastic degrees

of freedom measured with respect to its undeformed

base frame, and fx  is the vector of base frame

absolute degrees of freedom.  The f is the vector of
externally applied forces, e.g., aerodynamic forces.
The ,, bb KM  and bC are the beam mass stiffness,

and damping/gyroscopic matrices respectively.  The
matrices bFM , bFC , and bFK  represent inertial,

gyroscopic, and stiffness couplings between the beam
and the base frame motions.  In case the beam
represents the rotating blade, these coupling matrices
would be periodic in time.  Further, if the inflow is

yawed or sheared, matrices bb CM , , and bK
would also be periodic.  The θ  is the vector of pitch

controls.  The bF  is the vector of all constant and

nonlinear forces on the beam.

An effort is under way to develop a mixed
formulation for the beam component that allows
arbitrary reference frame rigid body motion.  In this
formulation, a mix of displacements, curvatures, and
momenta are selected as the nodal coordinates.  This

leads to a very simple set of beam equations and may
be incorporated in future should it be confirmed that
it wouldn’t result in any assembly or linearization
problems.

For a rigid component, the key issue is the choice of
orientation coordinates.  Euler angles, used by most
of the earlier multibody dynamic codes to represent
rigid body orientation, result in well-known
singularity problems.  More advanced codes use
Euler parameters which, though guaranteeing
avoidance of singularities, do not permit
linearization15.  Rodrigues parameters, the
orientation coordinates used by the modern dynamic
codes, may result in singularities, but only under
highly improbable situations.15 The overriding
advantages of the Rodrigues parameters are the
feasibility of linearization and simplified equations.
We use the standard Newton-Euler equations for the
rigid component governing equations.  The angular
velocities appearing in the Newton-Euler equations
are developed in terms of the Rodrigues parameters
and their time derivatives.  These equations are used
later to develop a recursive formulation for
constrained multibody system.  We also use
Rodrigues parameters to develop a library of
constraint equations for standard joints, namely,
revolute joint, prismatic joint, cylindrical joint,
spherical joint, sliding-cum-ball joint, screw joint,
and planar joint.

ASSEMBLY INTO SYSTEM EQUATIONS

Assembly simply implies combining individual
component equations into a single set of system
equations by satisfying inter-component
displacement and force constraints. For the flexible
beam, the beam may be thought of as a super
component consisting of finite element components.
The Hamilton’s variational principle implicitly takes
care of the inter-element constraint forces since these
do not contribute to any energy variation associated
with configuration-compatible virtual displacements.
The finite element assembly takes care of the inter-
element displacement compatibility.

For rigid component inter-connections, which
include interconnection of a rigid body to a flexible
component via its reference frame, there are
basically three assembly schemes.  One is the use of
Lagrange multipliers in conjunction with the usage
of absolute coordinates.  This greatly facilitates
automated assembly of system equations because
configuration of each component of the multibody
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system is described by a global set of generalized
coordinates that are independent of the topological
configuration of the system. The Lagrange
multipliers take care of the inter-component
constraint forces. Constraint equations are used to
augment system differential equations to take care of
the inter-component displacements.  As pointed out
earlier, this results in a mixed system of differential
and algebraic equations.  This augmented
formulation in terms of absolute coordinates poses
several problems: a) complexity of the numerical
algorithms that must be used to solve the mixed
systems of differential and algebraic equations; b)
non-minimal number of systems governing
equations; c) increased likelihood of singularities
associated with orientation coordinates; and d)
system linearization that may be inappropriate for
modal analysis and controls applications.  The
second assembly approach is the Kane’s approach
wherein the generalized velocities are defined in
terms of constrained displacement coordinates
leading to a minimal set of system equations.  The
concept of generalized active forces implicitly takes
care of the constraint forces.  The third assembly
scheme, the recursive formulation, is particularly
suited for linearization of flexible multibody systems,
wherein the governing equations are formulated in
terms of the joint (relative) degrees of freedom.  The
constraint equations are also developed in terms of
joint (instead of absolute) coordinates and are used to
eliminate dependent coordinates as well as workless
constraint faces.  This leads to a minimal set of
differential equations.  The numerical procedure
required for solving these differential equations is
much simpler than the procedure required for
solving the mixed set of equations resulting from
augmented formulation.  Because of these
advantages, we select recursive formulation to
assemble the component equations.

Recursive Formulation
Fundamental to this formulation is developing a
kinematic relation between two bodies, 1−i  and i ,
in terms of joint variables connecting the two bodies.
For illustration we consider two rigid bodies 1−i
and i  connected by a cylindrical joint as shown in
Figure 2.  Most of the joints in a typical wind turbine
can be idealized as a revolute joint, which as we
shall see is a special case of the cylindrical joint.  For
other types of joints, a procedure similar to the one
outlined below is followed.

The two-degree-of-freedom cylindrical joint (Figure

2) permits relative rotation iφ  about, and relative

translation is  along, the joint axis 1−iv .  The
absolute translation and rotational coordinates of

body i , i.e. iR  and it , are related to similar
coordinates of body 1−i  as follows:

iii
p

iii
p

ii svuTRuTR 1111 −−−− =−−+ (8)

where i
pu is the position vector of point iP  fixed in

body i  relative to the reference coordinate triad

( )iii zyx ,,  fixed to body i .  The absolute angular

velocity iω  of body i  is related to the absolute
angular velocity

iiii ,11 −− += ωωω (9)

where ii ,1−ω is the angular velocity of body i with
respect to body 1−i , and is given by

iiii φω &1,1 −− = v (10)

The unit vector 1−iv , directed along the joint axis,
can be written as

111 −−− = iii vTv (11)

where 1−iv  unit vector is also along the joint axis
but is defined in the coordinate triad of body 1−i ,
and has therefore constant components.  A series of
vector and algebraic operations finally yields the
following equation for absolute acceleration of body
i :

ii
r

iiii β++= − QHQDQ &&&&&& 1 (12)

where

[ ]TiTiTi αRQ &&&& = (13)

== ii ωα & angular acceleration of body i
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pr  is the skew matrix associated with the
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( ) iiii φωβθ
&11 −− ×= v (18)

Note that the term of the matrices iD  and
iH depends on the joint type.  Equations similar to

(12), representing two bodies interconnected by a
joint, are developed for spherical, universal,
prismatic, resolute, and ball/sliding joints.  The
resolute joint in fact can be considered as a special

case of the cylindrical joint wherein translation is  is
held constant, and the prismatic joint is also a
special case of the cylindrical joint wherein the

rotation iφ  is held constant.

If motion of the base body i  is known, equation (12)
can be used recursively to express absolute
acceleration of any body i  in terms of the motion of
the base body and the motion of all the joints that
connect body i  to the base body (the base body is
usually the fixed ground).  Use of Newton-Euler
equations in conjunction with equation (12) yields a
minimal set of differential equations for each body
expressed in terms of the joint degrees of freedom.

In general, a multibody system, e.g., a wind turbine,
consists of interconnected rigid and flexible bodies.
Recursive relation (12) helps us to express the
motion of reference frame of any body i  in terms of
the joint degrees of freedom and the motion of a base
frame that may be attached to a rigid body or a
flexible body, e.g., the tower top.  The equation of
motion for each body thus is expressible in terms of
all the system joint degrees of freedom and all the
system elastic degrees of freedom.  These component
equations are simply collected and put in the matrix
form:
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(19)
where Jq  and Eq  represent the system joint and

elastic degrees of freedom, respectively.  Expressing
the system degrees of freedom as

[ ]TT
E

T
J qqx = (20)

equation (19) can be put in the compact form:
=++ KxxCxM &&&

NLF (21)

A parallel effort is under way to extend Kane’s
assembly scheme to include flexible components.  It
appears that for the flexible components, a mixed
formulation mentioned earlier would be required to
make assembly feasible.  Should we succeed, we

would perform a comparative study and select an
assembly approach that would be most advantageous
in terms of automation, linearization, simplicity of
equations, and computational time.

LINEARIZATION

System equations in the implicit form, that are
generally used by simulation codes, can be expressed
as

0),,,,( =tfxxxg &&& (22)

where x  is the vector of system coordinates, f  is the
vector of applied, e.g., aerodynamic forces, and t
represents time.  In the explicit form, the system
equations, resulting from the assembly of flexible
component equations and rigid component equations
are expressed as

),,,,()()()( θwxxFxKxCxM tttt NL &&&& =++ (23)

where w is the vector of wind velocity components,
and θ  is the vector of controls, e.g., pitch angles of
blades, which may be explicit functions of time
and/or the system coordinates x .  )(tM , )(tC , and

)(tK  are in general periodic functions of time. 
NLF  is

the vector of constant and nonlinear forces.
Expressing )(tx  as a perturbation about the periodic

solution, i.e.

)()()( 0 ttt xxx ∆+= (24)

equations (23) become

L&
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&&&&&&
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xx 00
0000 )()()(

x

(25)
or

),,(
00

xxfx
x
f

Kx
x
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CxM
x

&&
&

&&
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tNL
x

=∆

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







∂
∂−+∆













∂
∂−+∆

(26)

where 
0f  represents constant forces, e.g., time-

invariant centrifugal forces, and 
NLf  represents all

nonlinear terms.  Equation (26) represents the final
set of system linearized equations; the left-hand side
comprises the linear part and the right-hand side
comprises the nonlinear part.  To compute modal
frequencies and vectors, we set the right-hand side to
zero and use the Floquet approach.12,13  These modes
then may be used to transform equation (26) into the
modal domain.  Either these modal equations or the
physical-domain equations (26) can be transformed
into the first-order state-space format for use in
controls design.
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CURRENT STATUS AND FUTURE WORK

We derived the wind turbine component equations,
comprising both flexible and rigid parts.  For the
rigid parts, we attempted three approaches:
Lagrangian formulation based on global coordinates
and Lagrangian multipliers, recursive formulation
using joint coordinates, and Kane’s approach using
partial speeds.  This allows a wide choice of
assembly options.  A library of joint constraints,
based on Rodrigues parameters, has also been
developed that can be integrated into any of the
assembly schemes.  A scheme to symbolically
generate linearized equations has also been
developed.  Figure 2 shows the organization of the
computer code covering structural modeling.  The
code is being developed in a modular fashion to
allow efficient data management, future
modifications and expansions. Solid boxes indicate
modules that have been completely coded.  Boxes in
dashed lines indicate modules under development.

Both the component and system would be validated
with exact results, if available, and with other codes,
e.g., the ADAMS code, using specific forcing
functions and simulations.  This will be followed by
the integration of structure code with unsteady
aerodynamics and dynamic induced inflow models in
state-space formats.  The resulting aeroelastic code
will be validated with ADAMS for typical wind
turbine configurations and specific simulations.
Extensive results will be presented to demonstrate
the ability of the code to compute operating modes,
stability, and aeroelastic descriptive models in
diverse formats.
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Figure 1.  Fifteen degrees of freedom finite element used to discretize the flexible beam

Figure 2.  Relative motion of body i with respect to body 1−i .
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Figure 3.  Major modules of the structures code (solid lines identify completed modules, dashed lines identify
modules under development)
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